Known Unknowns

Why no one can say exactly how much is safe to drink while pregnant

8538709738_0e2f5bb2ab_b

I was waiting in the dining car of an Amtrak train recently when I looked up and saw that old familiar sign:

“According to the Surgeon General, women should not drink alcoholic beverages during pregnancy because of the risk of birth defects.”

One finds this warning everywhere: printed on bottles and menus or posted on placards at restaurants and even train cars barreling through Midwestern farmland in the middle of the night. The warnings are, of course, intended to reduce the number of cases of fetal alcohol syndrome in the United States. To that end, the Centers for Disease Control and Prevention (CDC) and the American Congress of Obstetricians and Gynecologists (ACOG) recommend that women avoid drinking any alcohol throughout their pregnancies.

Here’s how the CDC puts it:

“There is no known safe amount of alcohol to drink while pregnant.”

And here’s ACOG’s statement in 2008:

“. . . ACOG reiterates its long-standing position that no amount of alcohol consumption can be considered safe during pregnancy.”

Did you notice what they did there? These statements don’t actually say that no amount of alcohol is safe during pregnancy. They say that no safe amount is known and that no amount can be considered safe, respectively. Ultimately, these are statements of uncertainty. We don’t know how much is safe to drink, so it’s best if you don’t drink any at all.

Lest you think this is a merely a reflection of America’s puritanical roots, check out the recommendations of the U.K.’s National Health Service. While they make allowances for the fact that some women choose to drink, they still advise pregnant women to avoid alcohol altogether. As they say:

“If women want to avoid all possible alcohol-related risks, they should not drink alcohol during pregnancy because the evidence on this is limited.”

Yet it seems odd that the evidence is so limited. The damaging effects of binge drinking on fetal development were known in the 18th century and the first modern description of fetal alcohol syndrome was published in a French medical journal nearly 50 years ago. Six years later, in 1973, a group of researchers at the University of Washington documented the syndrome in The Lancet. Even then, people knew the cause of fetal alcohol syndrome: alcohol. And in the forty years since, fetal alcohol syndrome has become a well-known and well-studied illness. NIH alone devotes more than $30 million dollars annually to research in the field. So how come no one has answered the most pressing question (at least for pregnant women): How much is safe to drink?

One reason is that fetal alcohol syndrome isn’t like HIV. You can’t diagnose it with a blood test. Doctors rely on a characteristic pattern of facial abnormalities, growth delays and neural or mental problems – often in addition to evidence of prenatal alcohol exposure – to diagnose a child. Yet children exposed to and affected by alcohol during fetal development don’t always show all of these symptoms. Doctors and agencies now define fetal alcohol syndrome as the extreme end of a spectrum of disorders caused by prenatal alcohol exposure. The full spectrum, called fetal alcohol spectrum disorders (FASD), includes milder forms of the illness that involve subtler cognitive or behavioral problems and lack the classic facial features of the full-blown syndrome.

As you might imagine, milder cases of FASD are hard to identify. Pediatricians can miss the signs altogether. And there’s a fundamental difficulty in diagnosing the mildest cases of FASD. To put it crudely, if your child is slow, who’s to say whether the culprit is a little wine during pregnancy, genetics, too much television, too few vegetables, or god-knows-what-else? Unfortunately, identifying and understanding the mildest cases is crucial. These are the cases that worry pregnant women who drink lightly. They lie at the heart of the uncertainty voiced by the CDC, ACOG, and others. Most pregnant women would like to enjoy the occasional merlot or Sam Adams, but not if they thought it would rob their children of IQ points or otherwise limit their abilities – even just a little – down the line.

While it’s hard to pin down the subtlest cases in the clinic, scientists can still detect them by looking for differences between groups of children with different exposures. The most obvious way of testing this would be to randomly assign pregnant women to drink alcohol at different doses, but of course that experiment would be unethical and should never be done. Instead, researchers capitalize on the variability in how much women choose to drink during pregnancy (or at least how much they report that they drank, which may not always be the same thing.) In addition to interviewing moms about their drinking habits, the scientists test their children at different ages and look for correlations between prenatal alcohol exposure and test performance.

While essential, these studies can be messy and hard to interpret. When researchers do find correlations between moderate prenatal alcohol exposure and poor test performance, they can’t definitively claim that the former caused the latter (although it’s suggestive). A mysterious third variable (say, maternal cocaine use) might be responsible for them both. On the flip side, interpreting studies that don’t find correlations is even trickier.  It’s hard to show that one thing doesn’t affect another, particularly when you are interested in very small effects. To establish this with any confidence, scientists must show that it holds with large numbers of people and that they are using the right outcome measure (e.g., IQ score). FASD impairments can span language, movement, math skills, goal-directed behaviors, and social interactions. Any number of measures from wildly different tests might be relevant. If a given study doesn’t find a correlation between prenatal alcohol exposure and outcome measure, it might be because the study didn’t test enough children or didn’t choose the right test to pick up the subtle differences between groups.

When studies in humans get tricky, scientists often turn to animal models. FASD research has been no exception. These animal studies have helped us understand the physiological and biochemical mechanisms behind fetal alcohol syndrome, but they can’t tell us how much alcohol a pregnant woman can safely drink. Alcohol metabolism rates vary quite a bit between species. The sensitivity of developing neurons to alcohol may differ too. One study used computational modeling to predict that the blood alcohol level of a pregnant rat must be 10 times that of a pregnant human to wreak the same neural havoc on the fetus. Yet computational models are far from foolproof. Scientists simply don’t know precisely how a dose in a rat, monkey, or other animal would translate to a human mother and fetus.

And here’s the clincher: alcohol’s prenatal effects also differ between humans. Thanks to genetic differences, people metabolize alcohol at very different rates. The faster a pregnant woman clears alcohol from her system, the lower the exposure to her fetus. Other factors make a difference, too. Prenatal alcohol exposure seems to take a heavier toll on the fetuses of older mothers. The same goes for poor mothers, probably because of confounding factors like nutrition and stress. Taken together, these differences mean that if two pregnant women drink the same amount of alcohol at the same time, their fetuses might experience very different alcohol exposures and have very different outcomes. In short, there is no single limit to how much a pregnant woman can safely drink because every woman and every pregnancy is different.

As organizations like the CDC point out, the surest way to prevent FASD is to avoid alcohol entirely while pregnant. Ultimately, every expecting mother has to make her own decision about drinking based on her own understanding of the risk. She may hear strong opinions from friends, family, the blogosphere and conventional media. Lots of people will seem sure of many things and those are precisely the people that she should ignore.

When making any important decision, it’s best to know as much as you can – even when that means knowing how much remains unknown.

_____

Photo Credit: Uncalno Tekno on Flickr, used via Creative Commons license

Hurley TD, & Edenberg HJ (2012). Genes encoding enzymes involved in ethanol metabolism. Alcohol research : current reviews, 34 (3), 339-44 PMID: 23134050

Stoler JM, & Holmes LB (1999). Under-recognition of prenatal alcohol effects in infants of known alcohol abusing women. The Journal of Pediatrics, 135 (4), 430-6 PMID: 10518076

The Trouble with (and without) Fish

375664720_80723a9428_b

This week I’m posting a piece from my archives (August, 2011) that I’ve updated a little. Two things brought this post to mind: 1) the recent EPA report that women have become better informed about mercury and are making better choices at the fish counter and 2) remarkable updates from my scientist friend who is blogging her way through the world’s oceans as she collects water samples to catalog mercury levels around the globe. Both demonstrate that we are making some progress in studying and alerting people to the mercury in our waters and our fish. NB: when I say “now that I’m pregnant,” it’s 2011 me talking.

_________

Once upon a time in a vast ocean, life evolved. And then, over many millions of years, neurons and spinal cords and eyes developed, nourished all the while in a gentle bath of nutrients and algae.

Our brains and eyes are distant descendants of those early nervous systems formed in the sea. And even though our ancestors eventually sprouted legs and waddled out of the ocean, the neural circuitry of modern humans is still dependent on certain nutrients that their water-logged predecessors had in abundance.

This obscure fact about a distant evolution has recently turned into a major annoyance for me now that I’m pregnant. In fact, whether they know it or not, all pregnant women are trapped in a no-win dilemma over what they put into their stomachs. Take, for instance, a popular guidebook for pregnant women. On one page, it advocates eating lots of seafood while pregnant, explaining that fish contain key nutrients that the developing eyes and brain of the fetus will need. A few pages later, however, the author warns that seafood contains methylmercury, a neurotoxic pollutant, and that fish intake should be strictly curtailed. What is a well-meaning pregnant lady to do?

On a visceral level, nothing sounds worse than poisoning your child, so many women reduce their seafood intake while pregnant. I have spoken with women who cut all seafood out of their diet while pregnant, for fear that a little exposure could prove to be too much. They had good reason to be worried. Extreme methylmercury poisoning episodes in Japan and Iraq in past decades have shown that excessive methylmercury intake during pregnancy can cause developmental delays, deafness, blindness, and seizures in the babies exposed.

But what happens if pregnant women eliminate seafood from their diet altogether? Without careful supplementation of vital nutrients found in marine ecosystems, children face neural setbacks or developmental delays on a massive scale. Consider deficiencies in iodine, a key nutrient readily found in seafood. Its scarcity in the modern land-based diet was causing mental retardation in children – and sparked the creation of iodized salt (salt supplemented with iodine) to ensure that the nutritional need was met.

4566018341_8bc00c8aef_o

Perhaps the hardest nutrient to get without seafood is an omega-3 fatty acid known as DHA. In recent years, scientists have learned that this particular fatty acid is essential for proper brain development and functioning, yet it is almost impossible to get from non-aquatic dietary sources. At the grocery store, you’ll find vegetarian products that claim to fill those needs by supplying the biochemical precursor to DHA (found in flaxseed, walnuts, and soybean oils), but it’s not clear that the precursor will do the trick. Our bodies take a while to synthesize DHA from its precursor. In fact, we may burn much of the precursor for energy before we manage to convert it to DHA.

The best way for pregnant women to meet the needs of their growing babies is to eat food from marine sources. Yet thanks to global practices of burning coal and disposing of industrial and medical waste, any seafood women eat will expose their offspring to some amount of methylmercury. There’s no simple solution to this problem, although studies suggest that child outcomes are best when women consume ample seafood while avoiding species with higher levels of methylmercury (such as shark, tilefish, walleye, pike, and some types of tuna). It also matters where the fish was caught. Mercury levels will be higher in fish from mercury-polluted waters – one of the reasons that it’s important to catalog mercury levels around the globe.

Unless we start cleaning up our oceans, pregnant women will continue to face this awful decision each time they sit down at the dinner table. Far worse, we may face future generations with lower IQs and developmental delays regardless of which choice their mothers make. Thanks to shoddy environmental oversight, we may be saddling our children with brains that don’t work as well as our own. And that is something I truly can’t swallow.

____

Photo credits:

Photo 1: by Gideon (malias) on Flickr, used via Creative Commons license

Photo 2: by @Doug88888 on Flickr, used via Creative Commons license

Mother’s Ruin, Moralists, and the Circuitous Path of Science

William_Hogarth_-_Gin_Lane

Update: Since posting this piece, I’ve come across a paper that questions ancient knowledge about the effects of prenatal alcohol exposure. In particular, the author makes a compelling argument that the biblical story mentioned below has nothing to do with the safety of drinking wine while pregnant. Another paper (sorry, paywall) suggests that the “rhetoric of rediscovery” about the potential harm of alcohol during pregnancy was part of a coordinated attempt by “moral entrepreneurs” to sell a moralist concept to the American public in the late 1970s. All of which goes to show: when science involves controversial topics, its tortuous path just keeps on twisting.

If you ask someone to draw you a roadmap of science, you’re likely to get something linear and orderly: a one-way highway, perhaps, with new ideas and discoveries converging upon it like so many on-ramps. We like to think of science as something that slowly and deliberately moves in the right direction. It doesn’t seem like a proper place for off-ramps, not to mention detours, dead-ends, or roundabouts.

In reality, science is messy and more than a little fickle. As I mentioned in the last post, research is not immune to fads. Ideas fall in and out of fashion based on the political, financial, and social winds of the time. I’m not just talking about wacky ideas either. Even the idea that drinking during pregnancy can harm a developing fetus has had its share of rises and falls.

The belief that drinking while pregnant is harmful has been around since antiquity, popping up among the Ancient Greeks and even appearing in the Old Testament when an angel instructs Samson’s mother to abstain from alcohol while pregnant. Yet the belief was far from universal across different epochs and different peoples. In fact, it took a special kind of disaster for England and, in turn, America to rediscover this idea in the 18th century. The disaster was an epidemic . . . of people drunk on gin.

By the close of the 17th century, bickering between England and France caused the British to restrict the import of French brandy and encourage the local production of gin. Soon gin was cheap and freely available to even the poor and working classes. The Gin Epidemic was underway. Rampant drunkenness became a fact of life in England by 1720 and would persist for several decades after. During this time, gin was particularly popular among the ladies – a fact that earned it the nickname “Mother’s Ruin.”

Soon after the start of the Gin Epidemic, a new constellation of abnormalities became common in newborns. Physicians wondered if heavy prenatal exposure to alcohol disrupted fetal development. In 1726, England’s College of Physicians argued that gin was “a cause of weak, feeble and distempered children.” Other physicians noted the rise in miscarriages, stillbirths, and early infant mortality. And by the end of this gin-drenched era, Britain’s scientific community had little doubt that prenatal alcohol could irreversibly harm a developing fetus.

The notion eventually trickled across the Atlantic Ocean and took hold in America. By the early 19th century, American physicians like Benjamin Rush began to discourage the widespread use of alcohol-based treatments for morning sickness and other pregnancy-related ailments. By the middle of the century, research on the effects of prenatal alcohol exposure had become a talking point for the growing temperance movement. Medical temperance journals sprung up with names like Journal of Inebriety and Scientific Temperance Journal. Soon religious and moralistic figures were using the harmful effects of alcohol on fetal development to bolster their claims that all alcohol is evil and should be banned. They often couched the findings in inflammatory language, full of condemnations and reproach. In the end, their tactics worked. The 18th Amendment to the U.S. Constitution was ratified in 1919, outlawing the production, transportation, and sale of alcohol on American soil.

When the nation finally emerged from Prohibition more than thirteen years later, it had fundamentally changed. People were disillusioned with the temperance movement and wary of the moralistic rhetoric that had once seemed so persuasive. They discounted the old familiar lines from teetotal preachers – including those about the harms of drinking while pregnant. Scientists rejected studies published in medical temperance journals and began to deny that alcohol was harmful during pregnancy. In 1942, the prestigious Journal of the American Medical Association published a response to a reader’s question about drinking during pregnancy which said that even large amounts of alcohol had not been shown to be harmful to the developing human fetus. In 1948, an article in The Practitioner recommended that pregnant women drink alcohol with meals to aid digestion. Science was, in essence, back to square one yet again.

It wasn’t until 1973 that physicians rediscovered and named the constellation of features that characterize infants exposed to alcohol in the womb. The disease, fetal alcohol syndrome, is now an accepted medical phenomenon. Modern doctors and medical journals now caution women to avoid alcohol while pregnant. After a few political and religious detours, we’ve finally made it back to where we were in 1900. That’s the funny thing about science: it isn’t always fast or direct or immune to its cultural milieu. But if we all just have faith and keep driving, we’re bound to get there eventually. I’m almost sure of it.

______

Photo Credit: Gin Lane by William Hogarth 1751 (re-engraving by Samuel Davenport circa 1806). Image in public domain and obtained from Wikipedia.

Plastic and the Developing Brain

7921839158_7ed88d6e80_o

When I was pregnant with my daughter, I had enough on my mind. I didn’t have much time to think much about plastic. I knew vaguely that plastics can release estrogen-mimicking substances like bisphenol A (BPA) into our food and I’d heard that they might cause genital defects in male fetuses. But once my husband and I had the 20-week ultrasound and knew we were having a girl, I thought I could stop searching for products in cardboard or glass. It was just too hard. Everything is packaged in plastic these days.

Apparently I jumped the gun.

Scientific papers warning about the hazards of prenatal exposure to BPA have been coming out in a steady stream, with a string of particularly damning ones appearing over the last 18 months in the Proceedings of the National Academy of Sciences. Last month one in particular caught my eye: a study of how prenatal BPA exposure changes the brain. The results were enough to make this neuroscientist pause.

While we tend to think of estrogens as the sex hormones that manage ovulation and pregnancy, these molecules also have powerful and direct effects on the brain. Many types of neurons have estrogen receptors on their outer surface. While there are several kinds of estrogen receptors in the brain, all bind to estrogens (and other molecules that resemble estrogens) and all trigger changes within their neurons as a result. These small changes can potentially add up to alter how entire neural circuits function. In fact, estrogens influence a wide range of skills and behaviors – from cognitive function to mood regulation and even fine motor control. While we don’t yet know why estrogens have such a broad and powerful influence on the brain, it does appear that we should think twice before mucking around with estrogen levels, particularly in the developing brain.

BPA and other compounds found in plastics resemble estrogens. The similarity is close enough to fool estrogen receptors, which bind to these foreign molecules and interpret them as additional estrogen. Although BPA has been used commercially as a dental sealant and liner for food containers (among many other uses) since the 1960s, the health consequences of this case of mistaken identity are just beginning to be understood.

In the PNAS paper published last month, a group of scientists headed by Dr. Frances Champagne at Columbia report the effect of prenatal BPA exposure on mice. They fed pregnant laboratory mice one of three daily doses of BPA (2, 20, or 200 μg/kg) or a control product without BPA. These are not high doses of BPA. Based on the amount of BPA found in humans, scientists estimate that we are exposed to about 400 μg/kg per day. The U.S. Food and Drug Administration reached their own estimate by testing the amount of BPA in various foods and then approximating how much of these people consume daily. Their calculations put the figure at around 0.19 μg/kg daily for adults. This discrepancy (400 versus 0.19) is one of many points of contention between the FDA, the packaging industry, and the scientific community on the subject of BPA.

Champagne and her colleagues fed their mice BPA on each of the twenty days of mouse gestation. (That’s right, ladies: mouse pregnancies last less than three weeks.) After each mouse pup was born, the scientists either studied its behavior or sacrificed it and examined its brain.

What did they find? Prenatal BPA exposure had a noticeable impact on mouse brains, even at the lowest dose. They found BPA-induced changes in the number of new estrogen receptors being made in all three brain areas they examined: the prefrontal cortex, hypothalamus, and hippocampus. These effects were complex and differed depending on the gender of the animal, the brain area, the BPA dose, and the type of estrogen receptor. Still, in several cases the researchers found a surprising pattern. Without BPA-exposure, female mice typically made more new estrogen receptors than their male counterparts. The same was true for mice given the highest BPA dose. But among pups exposed to the two lowest BPA doses, male mice made more estrogen receptors than females! This sex-difference reversal stemmed from changes in both genders; male mice made more estrogen receptors than normal at these doses while female mice made fewer than their norm.

Champagne and colleagues also observed and recorded several behaviors of the mice in different circumstances. For most behaviors, males and females were naturally different from one another.  Just as human boys tend to chase each other more than girls do, male mouse pups chased more than females. Unexposed male mice sniffed a new mouse more than unexposed females did. They showed more anxiety-like behavior in an open space and were less active in their home cages. Prenatal BPA treatment reversed these natural sex differences. Exposed female mice did more sniffing, acted more anxious, and ran around less than their exposed male counterparts. And at the highest prenatal BPA dose, the male mice chased each other as rarely as the females did. In one case, BPA treatment affected the two genders similarly; both sexes were less aggressive than normal at the two lower doses and more aggressive than normal at the highest dose.

Overall, the results of the study are complex and it might be easy to ignore them because they don’t seem to tell a straightforward tale. Yet their findings can be summed up in a single sentence: BPA exposure in utero has diverse effects on the mouse brain and later behavior. Not only does the BPA ingested by the mom manage to affect the growing fetus, but those effects persist beyond the womb and past the end of the exposure to BPA.

Some will dismiss these results because they come from mice. After all, how much do we really resemble mice? Yet studies in monkeys have also found that BPA affects fetal development. And while mice and monkeys excrete BPA differently, they clear it at a similar rate — to each other and to human women. Results from correlational studies in humans also suggest that BPA exposure during development affects mood, anxiety and aggressiveness to varying degrees (depending on the child’s gender).

Still, there’s a lot we don’t know about the relevance of this study for humans. At the end of the day, mice aren’t humans and no one has agreed on how much BPA pregnant women ingest. Moreover, Champagne and colleagues examined only a small subset of the neural markers and behaviors that BPA might affect in mice. Perhaps the changes they describe are the worst of BPA’s effects, or perhaps they are only the tip of the iceberg. We don’t yet know.

What’s the upshot of all this? You may want to err on the side of caution, particularly if you’re pregnant. Avoid plastics when possible. Be aware of other sources of BPA like canned foods (which have plastic liners) and thermal receipts. Do what you can do and then try not to let it stress you out. If you’re pregnant, you already have enough on your mind.

As for my daughter, she seems to be fine despite her plasticized third trimester. While she doesn’t do much sniffing, she does occasionally slap my husband or me in the face. It could be the BPA making her aggressive. I choose to blame it on her sassy genes instead.

__

Photo credit: .imelda on Flickr

ResearchBlogging.org

Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, & Champagne FA (2013). Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proceedings of the National Academy of Sciences of the United States of America, 110 (24), 9956-61 PMID: 23716699

Flipping the Baby Switch

img_2348-1Rewind to last night. It was bedtime. My infant daughter was screaming and struggling in my lap while I tried to rock her to sleep. She pulled and twisted the skin on my face. She sunk her tiny teeth into my shoulder and chest. Exasperated, I rose from the rocker and started pacing around the nursery. Her tense little body instantly relaxed. Within ten seconds she was quiet and still. Within two minutes she was asleep.

The scene was not unusual for our household. Even as a newborn, my daughter was easy to upset and hard to soothe. When nothing else worked and I was about to lose my mind I’d get up and walk with her. Often the results were nothing short of miraculous. Imagine going from 100 miles per hour to zero in a snap. For those who recall the child android Vicki on the ‘80s TV show Small Wonder, think of the times someone flipped the off-switch on her back. That’s what it’s like when I walk with my daughter. Our aimless walking flips a switch somewhere inside of her. But how does the switch work? And why does she have one in the first place? A study published in Current Biology last month helps to explain this curious facet of infant behavior.

The head scientist behind the study was Dr. Kumi Kuroda at the RIKEN Brain Science Institute in Japan. As she described in an interview with ScienceNOW, she became interested in the topic when she noticed that she could calm her own newborn son by carrying him. She later tested 12 other newborns with their mothers and found that they behaved like her son. Overall, the effect was rapid and dramatic. Some babies stopped crying as soon as their mothers began to walk with them. The rest cried less and were less shrill when they did cry. The babies also moved less and had lower heart rates while they were being carried.

To study the biological mechanisms behind this remarkable calming response, Dr. Kuroda and her colleagues turned to mice. They showed that mouse pups have a similar response when carried by their mothers. Mouse moms carry their pups by the scruff of their necks. When carried, mouse pups less than 20 days old stop wriggling. Their heart rate slows and they stop crying out. (Like most mouse vocalizations, baby mouse cries are ultrasonic). They also draw their legs in when carried, making their bodies more compact for toting around.

Kuroda and colleagues investigated several physiological aspects of the calming response in mice. Only a few of these experiments are probably relevant for infants, since human babies don’t assume a compact position like carried mouse pups do. One looked for the triggers that make carried pups stop squirming. The scientists anesthetized the neck skin of baby mice and found that these animals wriggled more than untreated mouse pups when carried. They got the same result when they overdosed pups with vitamin B6 before testing. (Vitamin B6 overdose causes animals and humans to lose the sense of their body position and movement.) The upshot? For a mouse pup to stop wriggling when carried it must 1) sense that it’s being lifted and 2) sense that something is pulling on its neck skin. Take either sense away and the calming response disappears. My daughter may draw on similar senses to trigger her miraculous stillness while carried. (Only if you replace neck pulling with the pressure of my arms around her, of course. I don’t carry her by her neck skin, I swear.)

The scientists also wondered why a baby’s heart rate drops when it’s picked up and carried. To test this in mice, they gave pups a drug that turns down the parasympathetic nervous system (the set of nerves that return the body to a calm state after arousal). Pups treated with the drug still stopped wriggling when lifted, but their heart rates didn’t drop as they do in untreated pups. So while the parasympathetic nervous system slows down the carried pup’s (and possibly infant’s) heartbeat, it can’t take credit for other features of the calming response.

Clearly this calming response is more complicated than it seems. Many of my daughter’s brain areas, neural pathways, and sensory mechanisms were working in concert to soothe her last night as I walked her in circles. But why does she have this complex reaction to carrying in the first place? Grateful parents might imagine that the calming response evolved to keep us from going crazy, but unless going crazy involves committing infanticide, this explanation doesn’t hold water. Evolution doesn’t care whether parents are happy or well rested or have time to watch Game of Thrones. It only cares whether our offspring survive.

Dr. Kuroda and her colleagues propose that the calming response helped parents escape dangerous situations while protecting their young. According to this logic, calmer carried babies meant faster escapes and higher rates of survival. Certainly if you were running from a wild beast or a member of a rival village, holding a struggling infant might slow you down. Of course holding any infant would slow you down and it’s not clear that sprinting with a struggling newborn is much harder than lugging one that’s asleep.  The paper’s authors present little evidence to support their proposal, particularly in the context of human evolution. They point to a minor result with their mice that doesn’t easily translate to human behavior. In effect, the jury’s still out.

There are other possible explanations for the calming response, ones that don’t involve predators outrunning parents. Shushing can calm crying babies too, probably because it simulates an aspect of their environment in the womb (in this case,  physiological noise). The same could be true of walking with infants. The mothers in the Kuroda study held their babies against their chest and abdomen, which is also how I hold my daughter when I walk to soothe her. The type of movement she feels in that position is probably similar to the rocking and jostling she felt as a fetus in utero whenever I walked. If so, the calming response might be a result of early learning and comfort by association – a nice thought when you consider the gory alternative.

Each year at the end of May we find ourselves as far as possible from Thanksgiving Day. It can be something of a thankfulness drought. This May I am thankful for women in science and maternity leaves, computer-generated dragons and ’80s sitcom androids. And like Vicki’s parents, I am profoundly thankful that my daughter came furnished with an off-switch. Whatever the reason why.

___

Photo credit: Sabin Dang

Esposito G, Yoshida S, Ohnishi R, Tsuneoka Y, Rostagno Mdel C, Yokota S, Okabe S, Kamiya K, Hoshino M, Shimizu M, Venuti P, Kikusui T, Kato T, & Kuroda KO (2013). Infant Calming Responses during Maternal Carrying in Humans and Mice. Current biology : CB, 23 (9), 739-45 PMID: 23602481

Tubby Mirror

Today, at a full 9 months pregnant, I waddled around our neighborhood running errands in my frumpy maternity clothes. I passed men in designer shades and shoes, women in dresses with cinched belts and high heeled boots, cars with six-figure stickers. And just like every other outing I’ve made over the last few months, I got more stares than the slick cars and chic women.

My husband and I live next to a huge college campus and some pretty swanky LA neighborhoods. Here, young, beautiful people and expensive toys abound. In this particular area, it’s the pregnant lady who sticks out (particularly one traveling on foot). Sometimes I feel like an exotic, awkward species let loose from the zoo. It’s not necessarily a bad thing. Strangers strike up friendly conversations with me now when I’m out and about. They ask me: boy or girl? Or, when’s your due date? People have offered me their seats in waiting areas and a bus once made an extra stop for me when I would otherwise have missed it. I’ve had cashiers, bus drivers, and a homeless man bless my child. I’ve also had strangers touch my stomach, which is a little odd but usually also kind of endearing.

What I find most interesting about walking around these days is how people look at me. In particular, I notice the reactions of college girls that crowd our neighborhood sidewalks. These girls are all young, mostly quite thin and lovely and often fashionably dressed. They tend to roam around in packs, their heels clattering on the concrete. They laugh too loud and flash their still-white teeth and know that they’ve got years to go before getting pregnant and having kids, if in fact they ever do.

Many of these girls ignore me or do a double take and then look away. Nothing special. But sometimes one of them will gaze at my oddly shaped body with a look of open revulsion. Others will catch my eye and flash me a dreamy smile, as if we are sharing a secret or a promise of some sort. Why do the most striking reactions always come from college women? It’s possible that they haven’t yet learned the art of masking their emotions in public, but I don’t think that’s it. I’ve realized that they aren’t reacting to me, but rather to what I represent. For these young women, I illustrate a future that either frightens or delights them. Months of being comically tubby and uncomfortable. Going through the pain and excitement of labor. Experiencing the joys and responsibilities of motherhood. These girls see all of that in me.

It’s a strange and fascinating intimacy that I have never experienced before. I am more than a pregnant woman waddling down the block. For these girls, I am a reminder. A warning. A mirror. And for a single moment on the street, their expressions reveal everything. I am privy to something personal and private about these strangers’ hopes and fears, about how they see their futures and themselves.

Dreaming of Me

My belly button has all but disappeared. In its place, an odd little pillow of skin lies flush with the rest of my stomach. A dark line – the linea nigra – now runs down the length of my abdomen, dividing me in two. My appendix and intestines, previously at home in my abdominal cavity, have been pushed up and to the sides so that they now form mysterious bulges just below my ribs. Stranger still, I find myself in possession of someone else’s breasts. And then there’s the most noticeable change: the beach ball sized stomach that wholly eclipses my view of my feet.

Of course these changes didn’t come on all at once. I’ve had many months to notice and adjust to them. Still, they’ve happened more rapidly than any other physical changes I’ve experienced in my life. Faster than an adolescent growth spurt, certainly, or any weight gain or loss. My brain has had trouble keeping up. I bump into things with my belly, forgetting its size. I struggle to maintain my balance as my vestibular system tries to adjust to my changing weight distribution. But the lag that has fascinated me most is how I envision myself in my dreams.

Even months into my pregnancy, after my stomach had visibly ballooned, the self I inhabited while dreaming remained as lean as ever. Although thoughts of my pregnancy filled my waking hours, at night I wasn’t the least bit pregnant. In fact, I often dreamt of myself as a high schooler again, wandering the halls without a class schedule or scrambling to find a bus that would deliver me there on time. Why high school? I don’t put much stock in the elaborate interpretation of dream symbols, but I imagine that my dreams of being a lost high school student reflect my waking awareness that parenthood is at my doorstep and I am unprepared. In the face of such a dramatic life change, I can’t help but feel that I’ve lost my lunchbox or forgotten a homework assignment somewhere.

Then, a month or so ago, my dreams began to change. Or rather my dream self changed. My new self often had a swollen midsection and wore maternity clothes (or in one case, a maternity prom dress). She couldn’t drink alcohol and got worn out just walking from the car. The dreams weren’t usually about my pregnancy; my enormous belly was simply present, just like my arm, hands, and feet. Something about my self-image, my internal body schema, had updated. A switch had been flipped and my mind was caught up with my changing body.

I began to wonder about these internal self-schemas that reveal themselves in our dreams. Do other pregnant women experience the same switch and a similar lag? And how long does it take for them to switch back after they’ve delivered their babies? What about other changes to one’s appearance, like growing or shaving off a beard? Or, in a more dramatic example, what happens when someone loses a limb?

I haven’t found much written on baby bumps and beards, but several people have studied whether amputees dream of themselves with intact or amputated bodies. The answer, in short, is it depends. One study found that a majority of surveyed amputees dreamt of themselves with amputated bodies at least some of the time. Among them, 77% made the switch within the first 6 months following their amputations. But the study also showed that a surprising percentage of the surveyed amputees (31%) dreamt exclusively of themselves with intact bodies, even a decade or more after their amputations. Preliminary findings suggest that those who undergo the amputation at a later age, those who regularly use a prosthetic limb, and those who experience phantom sensations from the missing limb may all be more likely to dream with their bodies intact.

It should come as no surprise that the results of the studies are complicated and variable. We can’t expect anything as complex as dreams and internal self-representations to be wholly consistent from person to person or from one dream to another. In my case, I may be pregnant in one dream but not in the next. At times I even dream I’m someone other than myself. Wading into dreams can be a messy business, certainly, but my curiosity is piqued and I’m eager for more data. To all those pregnant or post-pregnant ladies, beard growers, or head shavers out there: please comment and share your experiences! How long did it take for your dream self to catch up with the real thing?

___

Photo credit: Sabin Dang

%d bloggers like this: