Modernity, Madness, and the History of Neuroscience

4666194636_a4d78d506e_o

I recently read a wonderful piece in Aeon Magazine about how technology shapes psychotic delusions. As the author, Mike Jay, explains:

Persecutory delusions, for example, can be found throughout history and across cultures; but within this category a desert nomad is more likely to believe that he is being buried alive in sand by a djinn, and an urban American that he has been implanted with a microchip and is being monitored by the CIA.

While delusional people of the past may have fretted over spirits, witches, demons and ghouls, today they often worry about wireless signals controlling their minds or hidden cameras recording their lives for a reality TV show. Indeed, reality TV is ubiquitous in our culture and experiments in remote mind-control (albeit on a limited scale) have been popping up recently in the news. As psychiatrist Joel Gold of NYU and philosopher Ian Gold of McGill University wrote in 2012: “For an illness that is often characterized as a break with reality, psychosis keeps remarkably up to date.”

Whatever the time or the place, new technologies are pervasive and salient. They are on the tips of our tongues and, eventually, at the tips of our fingers. Psychotic or not, we are all captivated by technological advances. They provide us with new analogies and new ways of explaining the all-but-unexplainable. And where else do we attempt to explain the mysteries of the world, if not through science?

As I read Jay’s piece on psychosis, it struck me that science has historically had the same habit of co-opting modern technologies for explanatory purposes. In the case of neuroscience, scientists and physicians across cultures and ages have invoked the  innovations of their day to explain the mind’s mysteries. For instance, the science of antiquity was rooted in the physical properties of matter and the mechanical interactions between them. Around 7th century BC, empires began constructing great aqueducts to bring water to their growing cities. The great engineering challenge of the day was to control and guide the flow of water across great distances. It was in this scientific milieu that the ancient Greeks devised a model for the workings of the mind. They believed that a person’s thoughts, feelings, intellect and soul were physical stuff: specifically, an invisible, weightless fluid called psychic pneuma. Around 200 AD, a physician and scientist of the Roman Empire (known for its masterful aqueducts) would revise and clarify the theory. The physician, Galen, believed that pneuma fills the brain cavities called ventricles and circulates through white matter pathways in the brain and nerves in the body just as water flows through a tube. As psychic pneuma traveled throughout the body, it carried sensation and movement to the extremities. Although the idea may sound farfetched to us today, this model of the brain persisted for more than a millennium and influenced Renaissance thinkers including Descartes.

By the 18th century, however, the science world was a-buzz with two strange new forces: electricity and magnetism. At the same time, physicians and anatomists began to think of the brain itself as the stuff that gives rise to thought and feeling, rather than a maze of vats and tunnels that move fluid around. In the 179os, Luigi Galvani’s experiments zapping frog legs showed that nerves communicate with muscles using electricity. So in the 19th century, just as inventors were harnessing electricity to run motors and light up the darkness, scientists reconceived the brain as an organ of electricity. It was a wise innovation and one supported by experiments, but also driven by the technical advances of the day.

Science was revolutionized once again with the advent of modern computers in the 1940s and ‘50s. In the 1950s, the new technology sparked a surge of research and theories that used the computer as an analogy for the brain. Psychologists began to treat mental events like computer processes, which can be broken up and analyzed as a set of discrete steps. They equated brain areas to processors and neural activity in these areas to the computations carried out by computers. Just as computers rule our modern technological world, this way of thinking about the brain still profoundly influences how neuroscience and psychology research is carried out and interpreted. Today, some labs cut out the middleman (the brain) entirely. Results from computer models of the brain are regularly published in neuroscience journals, sometimes without any data from an actual physical brain.

I’m sure there are other examples from the history of neuroscience in general and certainly from the history of science as a whole. Please comment and share any other ways that technology has shaped the models, themes, and analogies of science!

Additional sources:

Crivellato E & Ribatti D (2007) Soul, mind, brain: Greek philosophy and the birth of neuroscience. Brain Research Bulletin 71:327-336.

Karenberg A (2009) Cerebral Localization in the Eighteenth Century – An Overview. Journal of the History of the Neurosciences, 18:248-253.

_________

Photo Credit: dominiqueb on Flickr, available through Creative Commons

%d bloggers like this: