Eyes Wide Shut

3717066825_cf1b3f86a3_o

In the middle of the 20th century, experimental psychologists began to notice a strange interaction between human vision and time. If they showed people flashes of light close together in time, subjects experienced the flashes as if they all occurred simultaneously. When they asked people to detect faint images, the speed of their subjects’ responses waxed and waned according to a mysterious but predictable rhythm. Taken together, the results pointed to one conclusion: that human vision operates within a particular time window – about 100 milliseconds, or one-tenth of a second.

This discovery sparked a controversy about the nature of vision. Pretty much anyone with a pair of eyes will tell you that vision feels smooth and unbroken. But is it truly as continuous as it feels, or might it occur in discrete chunks of time? Could the cohesive experience of vision be nothing more than an illusion?

Enthusiasm for the idea of discrete visual processing faded over the years, although it was never disproven. Science is not immune to fads; ideas often fall in and out of favor. Besides, vision-in-chunks was a hard sell. It was counterintuitive and contrary to people’s subjective experience. Vision scientists set it aside and moved on to new questions and controversies instead.

The debate resurfaced in the last twenty years, sparked by the discovery of a new twist on an old optical illusion. Scientists have long known about the wagon wheel illusion, which makes it appear as if the wheels of moving cars (or wagons) in films are either turning in the wrong direction or not turning at all. The illusion is caused by a technical glitch: the combination of the periodic rotating wheel and the frame rate of the movie. Your brain doesn’t get enough examples of the spinning wheel to know its direction and speed. But in 1996, scientists discovered that the illusion also occurred in the real world. When hubcaps, tires, and modified LPs turned at certain rates, their direction appeared to reverse. Scientists dug the idea of discrete vision out of a trunk in the attic, dusted it off, and tried it out to explain the effect. In essence, the visual system might have a frame rate of its own. Cross this frame rate with an object rotating at a certain frequency and you’re left seeing tires spin backwards. It seemed to make sense.

In a clever set of experiments, the neuroscientist and author David Eagleman (of Incognito and Sum fame) shot this explanation down. He and his colleague, Keith Kline, chalked the illusion up to tiring motion-processing cells instead. Still, the debate about the nature of vision was reignited. Several neuroscientists became intrigued with the notion of vision-in-chunks and began to think about it in relation to a particular type of brain rhythm that cycles at a rate of – you guessed it – about ten times per second.

In recent years, a slew of experiments have supported the idea that certain aspects of vision happen in discrete packets of time – and that these packets are roughly one-tenth of a second long. The brain rhythms that correspond to this timing – called alpha waves – have acted as the missing link. Brain rhythms essentially tamp down activity in a brain area at a regular interval, like a librarian who keeps shushing a crowd of noisy kids. Cells in a given part of the brain momentarily fall silent but, as kids will do, they start right up again once the shushing is done.

Work by Rufin VanRullen at the Université de Toulouse and, separately, by Kyle Mathewson at the University of Illinois show how this periodic shushing can affect visual perception. For example, Mathewson and colleagues were able to predict whether a subject would detect a briefly flashed circle based on its timing relative to the alpha wave in that subject’s visual cortex. This and other studies like it demonstrate that alpha waves are not always helpful. If something appears at the wrong moment in your rhythm, you could be slower to see it or you might just miss it altogether. In other words, every tenth of a second you might be just a little bit blind.

If you’re a healthy skeptic, you may be wondering how well such experiments reflect vision in the real world. Unless your computer’s on the fritz, you probably don’t spend much time staring at circles on a screen. Does the 10-per-second frame rate apply when you’re looking at the complex objects and people that populate your everyday world?

Enter Frédéric Gosselin and colleagues from the Université de Montréal. Last month they published a simple study in the journal Cognition that tested the idea of discrete vision using pictures of human faces. They made the faces hard to see by bathing them in different amounts of visual ‘noise’ (like the static on a misbehaving television). Subjects had to identify each face as one of six that they had learned in advance. But while they were trying to identify each face, the amount of static on the face kept changing. In fact, Gosselin and colleagues were cycling the amount of static to see how its rate and phase (timing relative to the appearance of each new face) affected their subjects’ performance. They figured that if visual processing is discrete and varies with time, then subjects should perform best when their moments of best vision coincided with the moments of least static obscuring the face.

What did they find? People were best at identifying the faces when the static cycled at 10 or 15 times per second. Gosselin and colleagues suggest that the ideal rate may be somewhere between the two (a possibility that they can’t test after-the-fact). Their results imply that the visual alpha wave affects face recognition – a task that people do every day. But it may only affect it a little. The difference between the subjects’ best accuracy (when the static cycling was set just right) and their worst accuracy was only 7%. In the end, the alpha wave is one of many factors that determine perception. And even when these rhythms are shushing visual cortex, it’s not enough to shut down the entire area. Some troublemakers keep yapping right through it.

When it comes to alpha waves and the nature of discrete visual processing, scientists have their work cut out for them. For example, while some studies found that perception was affected by an ongoing visual alpha wave, others found that visual events (like the appearance of a new image) triggered new alpha waves in visual cortex. In fact, brain rhythms are not by any means exclusive; different rhythms can be layered one upon the other within a brain area, making it harder to pull out the role of any one of them.  For now it’s at least safe to say that visual processing is nowhere near as smooth and continuous as it appears. Your vision flickers and occasionally fails. As if your brain dims the lights, you have moments when you see less and miss more – moments that may happen tens of thousands of times each hour.

This fact raises a troubling question. Why would the brain have rhythms that interfere with perception? Paradoxically enough, discrete visual processing and alpha waves may actually give your visual perception its smooth, cohesive feel. In the last post I mentioned how you move your eyes about 2 or 3 times per second. Your visual system must somehow stitch together the information from these separate glimpses that are offset from each other both in time and space. Alpha waves allow visual information to echo in the brain. They may stabilize visual representations over time, allowing them to linger long enough for the brain, that master seamstress, to do her work.

_____

Photo credit: Tom Conger on Flickr with Creative Commons license

Blais C, Arguin M, & Gosselin F (2013). Human visual processing oscillates: Evidence from a classification image technique Cognition, 128 (3), 353-62 PMID: 23764998

Sight Unseen

6238705478_384842373b_o

Eyelids. They come in handy for sandstorms, eye shadow, and poolside naps. You don’t see much when they’re closed, but when they’re open you have an all-access pass to the visible world around you. Right? Well, not exactly. Here at Garden of the Mind, the next two posts are dedicated to the ways that you are blind – every day – and with your eyes wide open.

One of the ways you experience everyday blindness has to do with the movements of your eyes. If you stuck a camera in your retina and recorded the images that fall on your eye, the footage would be nauseating. Think The Blair Witch Project, only worse. That’s because you move your eyes about once every half a second – more often than your heart beats. You make these eye movements constantly, without intention or even awareness. Why? Because, thanks to inequalities in the eye and visual areas of the brain, your peripheral vision is abysmal. It’s true even if you have 20/20 vision. You don’t sense that you are legally blind in your peripheral vision because you compensate by moving your eyes from place to place. Like snapping a series of overlapping photographs to create a panoramic picture, you move your eyes to catch different parts of a scene and your brain stitches these ‘shots’ together.

As it turns out, the brain is a wonderful seamstress. All this glancing and stitching leaves us with a visual experience that feels cohesive and smooth – nothing like the Frankenstein creation it actually is. One reason this beautiful self-deception works is that we turn off much of our visual system every time we move our eyes. You can test this out by facing a mirror and moving your eyes quickly back and forth (as if you are looking at your right and left ears). Try as you might, you won’t be able to catch your eyes moving. It’s not because they’re moving too little for you to see; a friend looking over your shoulder would clearly see them darting back and forth. You can feel them moving yourself if you gently rest your fingers below your lower lashes.

It would be an overstatement to say that you are completely blind every time you move your eyes. While some aspects of visual processing (like that of motion) are switched off, others (like that of image contrast) seem to stay on. Still, this means that twice per second, or 7,200 times each hour, your brain shuts you out of your own sense of sight.  In these moments you are denied access to full visual awareness. You are left, so to speak, in the dark.

Photo credit: Pete Georgiev on Flickr under Creative Commons license

Plastic and the Developing Brain

7921839158_7ed88d6e80_o

When I was pregnant with my daughter, I had enough on my mind. I didn’t have much time to think much about plastic. I knew vaguely that plastics can release estrogen-mimicking substances like bisphenol A (BPA) into our food and I’d heard that they might cause genital defects in male fetuses. But once my husband and I had the 20-week ultrasound and knew we were having a girl, I thought I could stop searching for products in cardboard or glass. It was just too hard. Everything is packaged in plastic these days.

Apparently I jumped the gun.

Scientific papers warning about the hazards of prenatal exposure to BPA have been coming out in a steady stream, with a string of particularly damning ones appearing over the last 18 months in the Proceedings of the National Academy of Sciences. Last month one in particular caught my eye: a study of how prenatal BPA exposure changes the brain. The results were enough to make this neuroscientist pause.

While we tend to think of estrogens as the sex hormones that manage ovulation and pregnancy, these molecules also have powerful and direct effects on the brain. Many types of neurons have estrogen receptors on their outer surface. While there are several kinds of estrogen receptors in the brain, all bind to estrogens (and other molecules that resemble estrogens) and all trigger changes within their neurons as a result. These small changes can potentially add up to alter how entire neural circuits function. In fact, estrogens influence a wide range of skills and behaviors – from cognitive function to mood regulation and even fine motor control. While we don’t yet know why estrogens have such a broad and powerful influence on the brain, it does appear that we should think twice before mucking around with estrogen levels, particularly in the developing brain.

BPA and other compounds found in plastics resemble estrogens. The similarity is close enough to fool estrogen receptors, which bind to these foreign molecules and interpret them as additional estrogen. Although BPA has been used commercially as a dental sealant and liner for food containers (among many other uses) since the 1960s, the health consequences of this case of mistaken identity are just beginning to be understood.

In the PNAS paper published last month, a group of scientists headed by Dr. Frances Champagne at Columbia report the effect of prenatal BPA exposure on mice. They fed pregnant laboratory mice one of three daily doses of BPA (2, 20, or 200 μg/kg) or a control product without BPA. These are not high doses of BPA. Based on the amount of BPA found in humans, scientists estimate that we are exposed to about 400 μg/kg per day. The U.S. Food and Drug Administration reached their own estimate by testing the amount of BPA in various foods and then approximating how much of these people consume daily. Their calculations put the figure at around 0.19 μg/kg daily for adults. This discrepancy (400 versus 0.19) is one of many points of contention between the FDA, the packaging industry, and the scientific community on the subject of BPA.

Champagne and her colleagues fed their mice BPA on each of the twenty days of mouse gestation. (That’s right, ladies: mouse pregnancies last less than three weeks.) After each mouse pup was born, the scientists either studied its behavior or sacrificed it and examined its brain.

What did they find? Prenatal BPA exposure had a noticeable impact on mouse brains, even at the lowest dose. They found BPA-induced changes in the number of new estrogen receptors being made in all three brain areas they examined: the prefrontal cortex, hypothalamus, and hippocampus. These effects were complex and differed depending on the gender of the animal, the brain area, the BPA dose, and the type of estrogen receptor. Still, in several cases the researchers found a surprising pattern. Without BPA-exposure, female mice typically made more new estrogen receptors than their male counterparts. The same was true for mice given the highest BPA dose. But among pups exposed to the two lowest BPA doses, male mice made more estrogen receptors than females! This sex-difference reversal stemmed from changes in both genders; male mice made more estrogen receptors than normal at these doses while female mice made fewer than their norm.

Champagne and colleagues also observed and recorded several behaviors of the mice in different circumstances. For most behaviors, males and females were naturally different from one another.  Just as human boys tend to chase each other more than girls do, male mouse pups chased more than females. Unexposed male mice sniffed a new mouse more than unexposed females did. They showed more anxiety-like behavior in an open space and were less active in their home cages. Prenatal BPA treatment reversed these natural sex differences. Exposed female mice did more sniffing, acted more anxious, and ran around less than their exposed male counterparts. And at the highest prenatal BPA dose, the male mice chased each other as rarely as the females did. In one case, BPA treatment affected the two genders similarly; both sexes were less aggressive than normal at the two lower doses and more aggressive than normal at the highest dose.

Overall, the results of the study are complex and it might be easy to ignore them because they don’t seem to tell a straightforward tale. Yet their findings can be summed up in a single sentence: BPA exposure in utero has diverse effects on the mouse brain and later behavior. Not only does the BPA ingested by the mom manage to affect the growing fetus, but those effects persist beyond the womb and past the end of the exposure to BPA.

Some will dismiss these results because they come from mice. After all, how much do we really resemble mice? Yet studies in monkeys have also found that BPA affects fetal development. And while mice and monkeys excrete BPA differently, they clear it at a similar rate — to each other and to human women. Results from correlational studies in humans also suggest that BPA exposure during development affects mood, anxiety and aggressiveness to varying degrees (depending on the child’s gender).

Still, there’s a lot we don’t know about the relevance of this study for humans. At the end of the day, mice aren’t humans and no one has agreed on how much BPA pregnant women ingest. Moreover, Champagne and colleagues examined only a small subset of the neural markers and behaviors that BPA might affect in mice. Perhaps the changes they describe are the worst of BPA’s effects, or perhaps they are only the tip of the iceberg. We don’t yet know.

What’s the upshot of all this? You may want to err on the side of caution, particularly if you’re pregnant. Avoid plastics when possible. Be aware of other sources of BPA like canned foods (which have plastic liners) and thermal receipts. Do what you can do and then try not to let it stress you out. If you’re pregnant, you already have enough on your mind.

As for my daughter, she seems to be fine despite her plasticized third trimester. While she doesn’t do much sniffing, she does occasionally slap my husband or me in the face. It could be the BPA making her aggressive. I choose to blame it on her sassy genes instead.

__

Photo credit: .imelda on Flickr

ResearchBlogging.org

Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, & Champagne FA (2013). Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proceedings of the National Academy of Sciences of the United States of America, 110 (24), 9956-61 PMID: 23716699

Flipping the Baby Switch

img_2348-1Rewind to last night. It was bedtime. My infant daughter was screaming and struggling in my lap while I tried to rock her to sleep. She pulled and twisted the skin on my face. She sunk her tiny teeth into my shoulder and chest. Exasperated, I rose from the rocker and started pacing around the nursery. Her tense little body instantly relaxed. Within ten seconds she was quiet and still. Within two minutes she was asleep.

The scene was not unusual for our household. Even as a newborn, my daughter was easy to upset and hard to soothe. When nothing else worked and I was about to lose my mind I’d get up and walk with her. Often the results were nothing short of miraculous. Imagine going from 100 miles per hour to zero in a snap. For those who recall the child android Vicki on the ‘80s TV show Small Wonder, think of the times someone flipped the off-switch on her back. That’s what it’s like when I walk with my daughter. Our aimless walking flips a switch somewhere inside of her. But how does the switch work? And why does she have one in the first place? A study published in Current Biology last month helps to explain this curious facet of infant behavior.

The head scientist behind the study was Dr. Kumi Kuroda at the RIKEN Brain Science Institute in Japan. As she described in an interview with ScienceNOW, she became interested in the topic when she noticed that she could calm her own newborn son by carrying him. She later tested 12 other newborns with their mothers and found that they behaved like her son. Overall, the effect was rapid and dramatic. Some babies stopped crying as soon as their mothers began to walk with them. The rest cried less and were less shrill when they did cry. The babies also moved less and had lower heart rates while they were being carried.

To study the biological mechanisms behind this remarkable calming response, Dr. Kuroda and her colleagues turned to mice. They showed that mouse pups have a similar response when carried by their mothers. Mouse moms carry their pups by the scruff of their necks. When carried, mouse pups less than 20 days old stop wriggling. Their heart rate slows and they stop crying out. (Like most mouse vocalizations, baby mouse cries are ultrasonic). They also draw their legs in when carried, making their bodies more compact for toting around.

Kuroda and colleagues investigated several physiological aspects of the calming response in mice. Only a few of these experiments are probably relevant for infants, since human babies don’t assume a compact position like carried mouse pups do. One looked for the triggers that make carried pups stop squirming. The scientists anesthetized the neck skin of baby mice and found that these animals wriggled more than untreated mouse pups when carried. They got the same result when they overdosed pups with vitamin B6 before testing. (Vitamin B6 overdose causes animals and humans to lose the sense of their body position and movement.) The upshot? For a mouse pup to stop wriggling when carried it must 1) sense that it’s being lifted and 2) sense that something is pulling on its neck skin. Take either sense away and the calming response disappears. My daughter may draw on similar senses to trigger her miraculous stillness while carried. (Only if you replace neck pulling with the pressure of my arms around her, of course. I don’t carry her by her neck skin, I swear.)

The scientists also wondered why a baby’s heart rate drops when it’s picked up and carried. To test this in mice, they gave pups a drug that turns down the parasympathetic nervous system (the set of nerves that return the body to a calm state after arousal). Pups treated with the drug still stopped wriggling when lifted, but their heart rates didn’t drop as they do in untreated pups. So while the parasympathetic nervous system slows down the carried pup’s (and possibly infant’s) heartbeat, it can’t take credit for other features of the calming response.

Clearly this calming response is more complicated than it seems. Many of my daughter’s brain areas, neural pathways, and sensory mechanisms were working in concert to soothe her last night as I walked her in circles. But why does she have this complex reaction to carrying in the first place? Grateful parents might imagine that the calming response evolved to keep us from going crazy, but unless going crazy involves committing infanticide, this explanation doesn’t hold water. Evolution doesn’t care whether parents are happy or well rested or have time to watch Game of Thrones. It only cares whether our offspring survive.

Dr. Kuroda and her colleagues propose that the calming response helped parents escape dangerous situations while protecting their young. According to this logic, calmer carried babies meant faster escapes and higher rates of survival. Certainly if you were running from a wild beast or a member of a rival village, holding a struggling infant might slow you down. Of course holding any infant would slow you down and it’s not clear that sprinting with a struggling newborn is much harder than lugging one that’s asleep.  The paper’s authors present little evidence to support their proposal, particularly in the context of human evolution. They point to a minor result with their mice that doesn’t easily translate to human behavior. In effect, the jury’s still out.

There are other possible explanations for the calming response, ones that don’t involve predators outrunning parents. Shushing can calm crying babies too, probably because it simulates an aspect of their environment in the womb (in this case,  physiological noise). The same could be true of walking with infants. The mothers in the Kuroda study held their babies against their chest and abdomen, which is also how I hold my daughter when I walk to soothe her. The type of movement she feels in that position is probably similar to the rocking and jostling she felt as a fetus in utero whenever I walked. If so, the calming response might be a result of early learning and comfort by association – a nice thought when you consider the gory alternative.

Each year at the end of May we find ourselves as far as possible from Thanksgiving Day. It can be something of a thankfulness drought. This May I am thankful for women in science and maternity leaves, computer-generated dragons and ’80s sitcom androids. And like Vicki’s parents, I am profoundly thankful that my daughter came furnished with an off-switch. Whatever the reason why.

___

Photo credit: Sabin Dang

Esposito G, Yoshida S, Ohnishi R, Tsuneoka Y, Rostagno Mdel C, Yokota S, Okabe S, Kamiya K, Hoshino M, Shimizu M, Venuti P, Kikusui T, Kato T, & Kuroda KO (2013). Infant Calming Responses during Maternal Carrying in Humans and Mice. Current biology : CB, 23 (9), 739-45 PMID: 23602481

My Body or Yours?

liztan_bodiespic

Today we’re talking bodies. Not how they look in skinny jeans or whether they can win a Tour de France without steroids. We’re talking about how it feels to have a body of your own, one that is (or seems to be) conveniently connected to your head and neck.

I’ve written about body ownership before in the context of pregnancy. Although I focused on how I dreamt of my body during sleep, I also mentioned that my ballooning physical dimensions affected my coordination. I’d bump into countertops or doorways with my big belly and sometimes struggled to locate my center of gravity. Yet as strange as my new body was, it always felt like it belonged to me. This was an enormous blessing, of course, but it’s somewhat surprising  as well. After all, before my pregnancy I’d lived with the same body since puberty. After more than a decade and a half of experience with that body, I suddenly had to adjust to my new body in a matter of months. Or rather days, because that new body kept growing larger still. Although my belly would feel surreal at times, overall I had remarkably little trouble adjusting to my metamorphosis. The body was still mine in all its lumpy glory.

I was reminded of this experience recently when I came across a scientific paper about body swapping. I know it sounds as if the only science in something called body swapping must come from the term science fiction. Actually, body swapping is a remarkable perceptual illusion that requires nothing more than a second person, a set of head mounted cameras and a set of head mounted displays. Someone facing you wears the cameras mounted on a helmet and you wear the visual displays (which are presented to your two eyes like goggles as part of a virtual reality-style headset). The camera footage, filmed from the visual perspective of the second person, is fed directly into your visual display. Thus, you see your own body from the second person’s perspective.

But we haven’t made it to Freaky Friday just yet. The illusion requires something more. You and the other person take each other’s hands and begin squeezing them simultaneously. Nothing fancy. But in the words of the write up by Valeria Petkova and Henrik Ehrsson, this simple setup alone “. . . evoked a vivid illusion that the experimenter’s arm was the participant’s own arm and that the participants could sense their entire body just behind this arm. Most remarkably, the participants’ sensations of the tactile and muscular stimulation elicited by the squeezing of the hands seemed to originate from the experimenter’s hand, and not from their own clearly visible hand.”

So after a lifetime in your own body, it only takes a video feed and a few hand squeezes for you to make yourself at home in someone else’s arms and legs. If this setup sounds familiar, it is a more impressive incarnation of the classic rubber hand illusion. And a new and remarkable twist on the illusion just appeared in the news: scientists in the same lab have made people feel as if they have an invisible hand. (For a great discussion of this new illusion, read this.)

In science, we tend to think about human perception in general and illusions in particular in terms of adaptations and optimizations. Lots of visual illusions are based on the statistical probability of objects and events in our environment. Our brains learn to predict and extrapolate information about our settings because they jump to the likeliest conclusions. In this way illusions, while technically errors, often reveal clever shortcuts our brain takes to help us understand or parse our surroundings faster, better, or at less of an energy cost.

But what about the body swap? Since we never actually swap bodies, why should we mentally be able to do it? What’s the advantage? Well, the advantage seems to come down to the very fact that we never actually swap bodies. In our ever-changing world, a rare given is that you will have the same body tomorrow that you had today and yesterday. So why should your brain waste precious time or energy soliciting proof from every finger and toe, curve and joint, flex and bend? Take a smidge of visual evidence (in this case, the video display) and a dab of tactile confirmation (hand squeezing) and you have a recipe for body ownership. How often in the natural world would this recipe ever lead you astray?

So in essence you only think that you feel that you own your body. In truth, your brain is creating that sensation on the fly all the time. You could think of it as a philosophical conundrum or cause for an existential crisis. I prefer to think of it as good news for pregnant ladies everywhere.

_____

Photo credit: Elizabeth Tan

ResearchBlogging.org

Petkova VI, & Ehrsson HH (2008). If I Were You: Perceptual Illusion of Body Swapping PLOS One DOI: 10.1371/journal.pone.0003832